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Abstract

The BaSnO3/Ag/BaSnO3 multilayer structure was designed and fabricated on a quartz glass by magnetron
sputtering, followed by an annealing process at a temperature from 150 to 750 °C in air. In this paper, we
investigated the influence of the annealing temperature on the structural, optical, and electrical properties of the
multilayers and proposed the mechanisms of conduction and transmittance. The maximum value of the figure of
merit of 31.8 × 10−3 Ω−1 was achieved for the BaSnO3/Ag/BaSnO3 multilayer thin films annealed at 150 °C, while the
average optical transmittance in the visible ranges was >84 %, the resistivity was 5.71 × 10−5 Ω cm, and the sheet
resistance was 5.57 Ω/sq. When annealed at below 600 °C, the values of resistivity and transmittance of the
multilayers were within an acceptable range (resistivity <5.0 × 10−4 Ω cm, transmittance >80 %). The observed
property of the multilayer film is suitable for the application of transparent conductive electrodes.
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Abbreviations: BAB, Barium stannate/Ag/barium stannate; BSO, Barium stannate; FPD, Flat panel display;
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thin films; XRD, X-ray diffraction

Background
Transparent conducting thin films (TCFs) are functional
materials that combine high optical transparency with
low resistivity, which are in demand in a variety of
promising applications including organic photovoltaic
cells, gas sensors, energy–efficient windows, photocata-
lysts, flat panel displays (FPDs), and organic light-
emitting diodes (OLEDs) [1–5]. Indium tin oxide (ITO)
has been investigated extensively and applied widely
[6–8]. However, indium is a very costly material for its
scarcity [9, 10]. Therefore, alternative new easy–to–handle
TCF materials have attracted great technological and sci-
entific interest. Recently, a novel structure with a three–
layer system of oxide/metal/oxide (O/M/O) has attracted
great attention [11–15]. With this O/M/O sandwich struc-
ture, the electrical conductivity of TCFs can be signifi-
cantly improved with a very thin metal film without the
degradation of optical transmittance because the reflection
from the metal in visible region can be suppressed by the

oxide layers [16, 17]. Among metallic materials, Au, Ag,
Cu, and Al have been practically used as the thin metal
layer because of their very low resistivity [11, 13, 14, 16].
However, both the metal Cu and Al are sensitive to oxy-
gen, and the heat stability is poor. In addition, the metal
Au is relatively expensive. These prevent them from being
the optimal choice for application. Ag is a good candidate
for such a multilayer film due to its relatively low cost,
good chemical stability, and thermal tolerance [17]. There-
fore, we selected Ag as the metal layer in this work.
The barium stannate (BaSnO3, BSO) has recently

attracted much attention due to the advantages in phys-
ical properties of perovskites. These perovskite barium
stannate materials have great potential applications for
innovative micro- and nano-electronic devices [18–20].
BSO is insulator, the band gap value is 3.23–4.02 eV and
optical transmittance in the wavelength range from 380
to 2600 nm is above 90 % [19, 21]. In addition, the
chemical and thermal stability under hydrogen plasma
process is very good. As a result, the BSO/Ag/BSO
(BAB) multilayer thin films have the advantages of low
resistivity, high optical transmittance, and good chemical
and thermal stability.
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It is well known that many photo-electronic devices are
usually prepared in an appropriate high temperature.
Therefore, the thermal stability of BAB multilayer thin
films has to be evaluated before its widely practical appli-
cations. In this work, a sandwich structure of BaSnO3/
Ag/BaSnO3 multilayer thin film was designed and de-
posited onto quartz substrates by RF and DC magne-
tron sputtering. The influence of annealing temperature
on the structural, optical, and electrical properties of
the BAB multilayer films was investigated and the
mechanism was proposed.

Methods
The BAB multilayer thin films were prepared on quartz
substrates by RF magnetron sputtering of a BaSnO3 cer-
amic target and DC magnetron sputtering of a Ag target
(99.99 % purity, 60-mm diameter, 0.30-cm thickness) in
an inline magnetron sputtering deposition system at
room temperature (Model#, manufacturer of magnetron
sputtering deposition system). The starting materials of
BaSnO3 ceramic target were weighed and mixed with
raw materials of BaCO3 (99.99 %) and SnO2 (99.99 %)
according to the stoichiometric mole ratio of the BaSnO3,
which were milled for 6 h and sintered at 1400 °C for 12 h
to fabricate BaSnO3 ceramic target. The distance from the
target to the substrate was fixed at 6 cm. The working
pressure for deposition was maintained at 0.5 Pa in a high
purity (99.999 %) Argon gas. The sputtering power of both
the top and bottom BaSnO3 layers was 50 W, and the
thickness was 50 nm. The sputtering power of Ag mid-
layer was 40 W, and the thickness was 9 nm. There was
no break in vacuum at any stage during the preparation of
the films. After the deposition, the BAB multilayer thin
films were annealed at 150, 300, 450, 600, and 750 °C for
an hour in air, respectively.
The thickness was measured by Alpha–Step D-100 pro-

filometer (KLA–Tencor, CA, USA). The crystal structure
was characterized by X-ray diffraction system (XRD; DX–
2500, FangYuan, PR China) equipped with a Cu–Kα radi-
ation source (1.542 Å). The electrical properties (including
electrical resistivity, Hall mobility, carrier concentration,
and sheet resistance) were measured by Hall measure-
ments in the van der Pauw configuration (Ecopia HMS
3000 Hall System, Republic of Korea) and four-point
probe instrument (SX1934, SuZhou, PR China). Optical
transmittance and absorption spectra were measured with
a UV–VIS spectrophotometer (Varian Cary 5000, USA) in
the wavelength range 300–800 nm.

Results and Discussion
In multilayer thin films, the optical and electrical prop-
erties strongly depend on the microstructure of the
films. The X-ray diffraction measurements were used to
detect the microstructure of BAB multilayer thin films.

Figure 1 shows the XRD patterns of the as-deposited
BAB multilayer thin films before and after annealing, re-
spectively. All the multilayer thin films except the films
annealed at 900 °C do not show any characteristic X-ray
diffraction peaks of BSO, due to the crystallization
temperature of BSO at above 800 °C. (1 1 1) peak at
around 2θ = 38.5° are observed from the Ag in the BAB
multilayer thin films. The intensity of (1 1 1) peak is
weakened when the annealing temperature is increased,
which can be understood as the fact that the Ag mid-
layer becomes discontinuous or isolated islands due to
the diffusion and oxidation of numerous Ag atoms, lead-
ing to destruction of Ag layer. After annealed at 750 °C,
the (1 1 1) peak disappears, indicating the Ag mid-layer
do not exist. After annealed at 900 °C, the X-ray diffrac-
tion pattern from BAB multilayer thin films exhibits
multiple crystalline structures with (200) and (211). The
disappearance of Ag peaks may be due to the Ag atoms
are incorporated into the interstitial lattice sites of BSO
at high temperature.
Figure 2 shows the variation in electrical resistivity

and sheet resistance of the BAB multilayer thin films as
a function of the annealing temperature. The resistivity of
as-deposited BAB multilayer thin films is 7.30 × 10−5 Ω cm
at room temperature. With the increase in annealing
temperature, the resistivity initially decreases to a mini-
mum value (ρ ∼ 5.71 × 10−5 Ω cm) at 150 °C, and then
increases gradually to 3.64 × 10−4 Ω cm at 600 °C.
However, due to the further increase in the annealing
temperature to 750 °C, the multilayer thin films be-
come an insulator. As shown in Fig. 2, the variation of
the sheet resistance upon the temperature is similar to
that of the resistivity, which is due to the fact that the
sheet resistance approximately equals to the ratio of the
resistivity to the thickness of the films.

Fig. 1 XRD patterns of the as-deposited BAB multilayer thin films
before and after annealing
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The change in resistivity and sheet resistance can
be ascribed to the changes in carrier concentration
and mobility. In order to attain the detailed variation
information in resistivity of the BS/Ag/BS multilayer
thin films as the function of the annealing temperature,
the resistivity can be explained by the following basic
relation: [22]

ρ ¼ 1
neμ

ð1Þ

where ρ is resistivity, n is the carrier concentration, e is
the charge of electron, and μ is the carrier mobility.
Figure 3 shows the carrier concentration and mobility
of BAB multilayer thin films annealed at different
temperatures. The single BaSnO3 film is an insulator [20].
Upon insertion of the 9-nm thick Ag layer, the carrier
concentration increases sharply to 1.25 × 1022 cm−3. The
positions of Fermi levels of the Ag relative to the vacuum
level are different from BSO. The work function of BSO is
higher than that of Ag [23]; thus, an Ohmic contact is

formed at the interface between the metal Ag and the
BSO. When the Ag layer contacts with BSO layers, there
is significant injection of electrons into the BS layer due to
the accumulation of electrons occurs in the BSO layers.
The conduction and valence bands of BSO curve down-
ward due to these electrons transfer, until receiving a
thermodynamic equilibrium, since the Fermi level is con-
stant throughout the structure in thermodynamic equilib-
rium. As a consequence, the electrons in the Ag mid-layer
will flow into BSO layers without existence of barrier and
high carrier concentration is detected in the BAB multi-
layer thin films. The carrier concentration of BAB multi-
layer thin films gradually decreases with the increase in
the annealing temperature to 600 °C. Because the Ag
atoms have a high diffusion coefficient [24], Ag atoms
have enough energy to diffuse though BSO layers, and
oxygen atoms diffuse through silvers when increasing the
annealing temperature, the Ag mid-layer is destructed and
the Ag mid-layer becomes discontinuous or even isolated
islands. Due to the further increase in the annealing
temperature to 750 °C, the Ag mid-layer disappears as the
result in non-conductive multilayer thin films. Similarly,
the mobility initially increases, reaching a maximum value
(μ ∼ 10.42 cm2/Vs) at 150 °C, decreases gradually to
3.78 cm2/Vs when increasing the annealing temperature.
The initial increase in mobility is due to the quality of
BSO layers becomes better. When the annealing
temperature is above 200 °C, the decrease in the mobility
with annealing temperature is related to an increase in
discontinuous scattering sites due to the existence of dis-
continuous Cu layer or Cu islands.
Figure 4 shows the optical transmittance of BAB

multilayer thin films as a function of the annealing
temperature. The average optical transmittance can be
determined as follows [25]:

Fig. 2 Electrical resistivity and sheet resistance of the BAB multilayer
thin films as a function of the annealing temperature

Fig. 3 Carrier concentration and mobility of BAB multilayer thin films
annealed at different temperatures

Fig. 4 Optical transmittance of BAB multilayer thin films as a
function of the annealing temperature
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T av ¼

Z
V λð ÞT λð Þdλ
Z

V λð Þdλ
ð2Þ

where Tav is the average optical transmittance in the vis-
ible range (380–780 nm), V(λ) is the luminous spectral
efficiency function defining the standard observer for
photometry [26], and T(λ) is the measured transmittance
of BAB multilayer thin films. According to Eq. (2), the
average transmittance of quartz substrate is above 95 %,
the average transmittances of BAB multilayer thin films
annealed at different temperature can be calculated as
83.9, 84.1, 83.0, 82.3, 78.3, and 82.5 %, respectively. After
annealed at 150 °C, the BAS multilayer thin films
showed a maximum average transmittance of 84.1 %.
The average transmittance gradually decreased as the
annealing temperature further increased to 600 °C. As
we all know that the BSO layers can decrease the reflect-
ance from the surfaces of Ag and substrate and promote
high optical transmission in the visible region. However,
the antireflection effect of the BSO layers is weakened
due to the diffusion of Ag atoms into the BSO layers at a
high annealing temperature, and a great amount of lights
are scattered by the surfaces of Ag and substrate. There-
fore, the average transmittance decreased. In addition, the
light scattering loss caused by the discontinuous Ag layer
or isolated islands can also be a possible reason for the
relatively low transmittance at high temperature. As the
annealing temperature further increased to 750 °C, the
average transmittance increased again, which can be as-
cribed to the disappear of Ag mid-layer.
Figure 5 shows the change in optical absorption coeffi-

cient (α) with photon energy (hv) for the BAB multilayer
thin films with varying annealing temperature on quartz

substrate. To determine the energy gap, Eg, the follow-
ing equation is used [27–29]:

ahvð Þ2 ¼ C hv−Egð Þ ð3Þ
where h is the Planck constant, α is the frequency of in-
cident photon, and C is a constant depending on the
material. By extrapolating the linear region of α2 − (hv)
plots to the energy axis, the Eg values can be obtained.
From the inset, the optical band gap of the as-deposited
BAB multilayer thin film is 3.91 eV after annealed in air.
It can be found that the optical band gap of the multilayer
thin films narrows with the increase in the annealing
temperature. According to Fig. 3, we can know that the
carrier concentration for multilayer thin films increases as
the annealing temperature decreases. This means that the
band gap energy Eg increases with the carrier concentra-
tion increasing. The Fermi energy penetrates into the con-
duction band of the degenerate semiconductor, due to an
increase in the carrier concentration, which leads to the
energy band widening. This phenomenon is usually con-
sidered as the results of the Fermi level band filling in
crystals, known as the Burstein–Moss effect [30–32].
The figure of merit (FOM) is an important index that

briefly describes the relationship between sheet resist-
ance and optical transmittance for the TCFs. A figure of
merit, as defined by Haacke [31], is commonly used to
reflect the trade-off between optical transmittance and
electrical conduction, which can be defined as [33]

FOM ¼ T av
10

Rsh
ð4Þ

where T av
10 is the optical transmittance of multilayer

thin films and Rsh is the sheet resistance. Considering
the application of the multilayer thin films for display
devices, the average optical transmittance in the visible
range (380–780 nm) is used in Eq. (4). Figure 6 shows a

Fig. 5 Optical absorption coefficient (α) vs. photon energy (hv) for
the BAB multilayer thin films with varying annealing temperature

Fig. 6 FOM values of as-deposited BAB multilayer thin films and
with different annealing temperature
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plot of FOM for the as-deposited BAB multilayer thin
films and with different annealing temperature. From
the plot, it can be seen that the FOM value initially in-
creased with annealing temperature, reaching a maximum
value (31.8 × 10−3 Ω−1) at 150 °C, and then decreased with
further increase in the annealing temperature. The largest
FOM value was obtained when the multilayer thin films
were annealed at 150 °C. It can be concluded that the
BAB multilayer thin films annealed at 150 °C was a suit-
able structure for application in transparent electrode.

Conclusions
In conclusion, the BAB multilayer structure has been de-
signed and fabricated on quartz glass by simultaneous
RF magnetron sputtering of BaSnO3 and DC magnetron
sputtering of Ag, followed by annealing at a temperature
from 150 to 750 °C in air. The influence of the annealing
temperature on the structural, optical, and electrical
properties of the multilayers was experimentally investi-
gated. A good transparent conductive multilayer thin
film with an average optical transmittance of 84.1 %, re-
sistivity of 5.71 × 10−5 Ω cm, and the sheet resistance of
5.57 Ω/sq was achieved with an annealing temperature
at 150 °C, while the figure of merit reached a maximum
of 31.8 × 10−3 Ω−1, and the band gap is 3.90 eV. The values
of resistivity and transmittance of the multilayers were
within an acceptable range (resistivity <5.0 × 10−4 Ω cm,
transmittance >80 %). when annealed at below 600 °C.
These experimental results indicate that BAB multilayer
thin films are attractive candidates for application in trans-
parent conductive electrodes of optoelectronic devices.
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